Thiele Geotech Inc

Project

9/24/09

Page

1/14

Date

GRAVITY WALL LRFD DESIGN METHODOLOGY STONE STRONG PRECAST MODULAR BLOCK

Evaluate according to industry practice following AASHTO analytical techniques - refer to:

AASHTO LRFD Bridge Design Specifications, 4th Edition 2007

Additional analytical methods and theories are taken from previous AASHTO specifications and other FHWA guidelines - refer to:

AASHTO Standard Specifications for Highway Bridges 2002, 17th Addition

Mechanically Stabilized Earth Walls and Reinforced Slopes design and Construction Guidelines, NHI-00-043

Properties of Soil/Aggregate

soil and material properties should be determined for the specific materials to be used.

unit fill - γ_a = 110 pcf (max, see AASHTO 2002 5.9.2) & ϕ_u

leveling base – aggregate base typical $\gamma_b \& \phi_b$ (or concrete base may be substituted)

retained soil - $\gamma \& \phi$ by site conditions

foundation soil - $\gamma \phi$ & c by site conditions

interface angle - $\delta = \frac{1}{2} \phi$ (see AASHTO LRFD Table C3.11.5.9-1)

Geometric Properties

Effective weight of unit

block weight	24 SF unit – 750 lb/ft of wall
	6 SF unit – 450 lb/ft of wall
weight of aggregate	24 SF unit – 596 lb/ft of wall
	6 SF unit – 296 lb/ft of wall

Only 80% of the weight of aggregate and soil is included in the overturning calculations, W' (see AASHTO LRFD 11.11.4.4).

f	Thiele Geotech Inc		Page 3/14
Project	LRFD Design Methodology	Project # 08110.00	Date 9/24/09
	Unit Width/Center of Mass		
	The nominal unit width is 44 incher of mass of the concrete block and	es for both 24 SF and 6 SF d the unit fill is at 22.7 inches	blocks. The combined center s from the face.
	w ₁₁ = 3.67 ft		

x_u = 1.89 ft

Wall batter

The wall system is based around the 24 SF block that is 36 inches of height. The next block atop a 24 SF block will batter back 4 inches. The 6 SF block is 18 inches tall, and the next block atop a 6 SF block will batter 2 inches.

4 in. setback per 24 SF block (36 in. tall)

2 in. setback per 6 SF block (18 in. tall)

 $\omega = \tan^{-1}(4/36) = 6.34^{\circ}$

 $\omega' = \tan^{-1}(4/36) = 6.34^{\circ}$ (batter along back face matches the batter along the front)

Base Thickness/Embedment

The type and thickness of wall base or leveling pad and depth of embedment can vary by site requirements. A granular base with a thickness of 9 inches is commonly used, but the thickness can be adjusted to reduce the contact pressure. A concrete leveling pad or footing can also be used. The required embedment to the top of the base is related to the exposed height of the wall and by the slope at the toe, as well as other factors. The required embedment can be calculated for slopes steeper than 6H:1V using the following equation (see AASHTO LRFD Table C11.10.2.2-1):

 $h_e = H'/(20*S/6)$

where S is the run of the toe slope per unit fall and H' is the exposed height

A minimum embedment of 12 inches for level toe and 24 inches for toe slopes of 4H:1V or steeper is recommended for highway applications (AASHTO LRFD C.11.10.2.2)

Thiele Geotech Inc			Page 4/14
Project LRFD Design Methodology	Project # 08110.00	Date	9/24/09

Tail Extension Adjustments

The gravity wall capability can be increased by using a precast Mass Extender block (limited to approximately 12 additional inches, for a total block width of 56 inches) or a cast-in-place tail extension (width is not limited – recommend height be at least 2 times the width to provide shear through the tail openings).

If tail extensions are used, the following adjustments are made:

Wall batter

Wall batter is recalculated along the back of the wall from the rear of the tail extension to the rear of the top of the wall. Use ω ' in Coulomb equation and earth pressure component calculations. To calculate ω ' it is necessary to know the effective setback width, w_s, which in the horizontal distance between the back edge of the top block and the back edge of the mass extender at the bottom. w_s is the batter of the front face minus the length of tail extension, w_{te}. w_s is negative when the mass extender projects further than the back of the top block. Knowing this distance and the height of wall:

 $\omega' = \arctan(w_s / H_w)$

Interface Angle

 $\delta = \frac{3}{4} \phi$ (see AASHTO LRFD Table C3.11.5.9-1)

Weight of Wall

The weight of the wall includes the contributions of the mass extender and the soil wedge atop the mass extender. A typical concrete unit weight is 145 pcf. Use the soil unit weight for the soil wedge.

 $W_{te} = (w_{te} * H_{te}) * 145 \text{ pcf}$

where w_{te} is the width of the tail extension and H_{te} is the height of the extension (both in ft)

The weight of the soil triangle is calculated using the following equation:

$$W_s = (H - H_{te}) * \gamma * w_{te}/2$$

Note: The soil wedge is defined by the limit of the tail extension and not by the simplified batter of the back of the wall. The simplified batter is used in the earth pressure analysis. Since the minimum width of the tail extension is typically maintained, it may project beyond the extension at the first course.

	Project #	Date
LRFD Design Methodology	08110.00	9/24/09
culate Forces		
Coulomb active earth pressure co	efficient (see AASHTO LR	FD 3.11.5.3)
$K_{a} = \frac{\cos^{2}}{\cos^{2}(\omega')\cos(\omega' - \delta)\left[1 + \frac{1}{2}\right]}$	$\frac{\left(\phi + \omega'\right)}{\sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \beta)}{\cos(\omega' - \delta)\cos(\omega' + \beta)}}}\right]^{2}$	
Earth load components (see AAS	GHTO LRFD 11.10.5.2)	
Vertical Forces:		
P_v = 0.5 K _a γH ² sin(δ - ω')		
$Q_{dv} = K_a Q^* H^* sin(\delta - \omega)$ wh	ere Q is the effective surch	narge in psf
Horizontal Forces:		
$P_h = 0.5 K_a γ H^2 cos(δ - ω')$		
$Q_{dh} = K_a Q^* H^* cos(\delta - \omega') w$	here Q is the effective surc	harge in psf
$Q_{lh} = K_a Q^* H^* cos(\delta - \omega)$ wh	ere Q is the effective surch	narge in psf
Note: Surcharge loads ma vertical component of the l neglected as conservative as a dead load consistent	y be divided into dead and ive load (Q _{lv}) is a stabilizing For the example calculati with its use in the seismic o	live load components. The g force and should be ons, the surcharge is treate calculations.
Resisting forces		
Vertical Forces:		
W_{b} – Weight of wall units		
W _{te} – Weight of concrete ta	ail extension, if used	
W _a – Weight of infill aggree	gate (use 80% aggregate w	eight for overturning)
W_s – Weight of soil atop ta	il extension (use 80% aggr	egate weight for overturning
The center of gravity of the comp components of the wall and taking the hinge point of the block (see A be calculated using the following	onents of the wall can be c g a weighted average of the AASHTO 2002 5.9.2). Alter	alculated by laying out the eir weight and distance from rnately, the center of mass o

LRFD D	esign Methodo	ology	08110	.00	9/24/09
The ce	nter of mass o	f the stack of bl	ocks is calcula	ed as:	
	x _b = x _u + (H - h	n _u)/2 * tan(ω)			
The ce	nter of mass o	f the soil triangle	e over the tail i	8;	
	$x_s = w_u + (H_{te} -$	h_u) * tan(ω) + 2	2 * w _{te} /3 - w _s '/3		
The ce	nter of mass o	f the tail extensi	ion can be calc	ulated with t	he following equation:
	$x_{te} = w_u + w_{te}/2$	2			
This lea	ads to an over	all adjusted cen	ter of mass of:		
	x _w = [[x _u + (H -	H_u)/2 * tan(ω)]	* (W _b + W _a) + 3	$x_{te} * W_{te} + x_s$	* W_s]/(W_b + W_a + W_{te} + V_b
:	Note: the heig based on the 6 stacked with e	ht of unit, h _u , is SF unit to proc ither unit as the	taken as 3 ft. b duce the more bottom course	eased on the conservative).	24 SF unit instead of 1.5 result (units can be
The res	sultants of the	earth load comp	ponents are ca	culated as f	ollows:
	x _{Pv} =(H/3)*tan($\omega') + w_u + w_{te}$			
	x _{Qdv} =(H/2))*ta	$n(\omega') + w_u + w_{te}$			
	x _{Ph} =H/3				
	x _{Qdh} =H/2				
	x _{Qlh} =H/2				
T -1-1 (1-1-(- (0.14			
Table of Unfa	ctored Forces	& Moments			
		Force	•	x	Moment about toe
		(Ib)	1	F+)	(lb*ft)

	(lb)	(ft)	(lb*ft)
Vertical Forces			
weight of wall	$W_b + W_a + W_{te} + W_s$	Xw	$(W_b + W_a + W_{te} + W_s) * x_w$
modified weight	$W_{b} + 0.8*W_{a} + W_{te} + 0.8*W_{s}$	Xw	$(W_b + 0.8*W_a + W_{te} + 0.8*W_s) * x_w$
earth pressure	Pv	X _{Pv}	P _v *x _{Pv}
DL surcharge	Q _{dv}	X _{Qdv}	$Q_{dv}^* x_{Qdv}$
Horizontal Forces			
earth pressure	P _h	X Ph	P _h *x _{Ph}
DL surcharge	Q _{dh}	X _{Qdh}	$Q_{dh}^* x_{Qdh}$
LL surcharge	Q _{lh}	X _{Qlh}	Q _{lh} *x _{Qlh}

-)			
	Thiele	Geotech	Inc

Project	Project #	Date
LRFD Design Methodology	08110.00	9/24/09

Table of Load and Resistance Factors for the relevant load cases (based on AASHTO LRFD Tables 3.4.1-1 and 3.4.1-2)

	Strength	Strength	Strength	Extreme	Service
	l-a	l-b	IV	I (EQ)	I
Load Factors					
DL/ES	1.50	1.00	1.50	1.50	1.00
LL	1.75	1.75	0.00	0.00	1.00
EH	1.50	1.50	1.50	1.00	1.00
EQ	0.00	0.00	0.00	1.00	0.00
Resistance Factors					
DC	0.90	1.25	1.50	1.00	1.00
EV	1.00	1.35	1.35	1.00	1.00
BC	0.50	0.50	0.50	0.60	0.50

For each of the 5 load cases, the unfactored vertical and horizontal forces are multiplied by the corresponding load and resistance factors for each.

Table of Calculated Factored Forces and Moments

	Force	Moment
	(lb)	(lb*ft)
Vertical Forces		
block weight	(W _b + W _{te})*DC	(W _b + W _{te})*x _w *DC
aggregate weight	(W _a + W _s)*EV	(W _a + W _s)*x _w *EV
modified agg weight	0.8*(W _a + W _s)*EV	0.8*(W _a + W _s)*x _w *EV
earth pressure	P _v *EH	P _v *x _{Pv} *EH
DL surcharge	Q _{dv} *DL/ES	Q _{dv} *x _{Qdv} *DL/ES
Horizontal Forces		
earth pressure	P _h *EH	P _h *x _{Ph} *EH
DL surcharge	Q _{dh} *DL/ES	Q _{dh} *x _{Qdh} *DL/ES
LL surcharge	Q _{lh} *LL	Q _{lh} *x _{Qlh} *LL

Page 8/14

Thiele Geotech Inc			Page	9/14
Project LRFD Design Methodology	Project # 08110.00	Date	9/24/09	

Overturning/Eccentricity

For overturning, the modified weights using 80% of the aggregate weight (including the soil over the tail extension) are used for all overturning calculations.

Although not an explicit requirement of the AASHTO specification, the driving and resisting overturning moments should be compared:

M'∨	Σ factored moments from vertical forces (using 80% W_{s} & $W_{a})$
M _H	Σ factored moments from horizontal forces

For each load case, the factored overturning resistance should be greater than the factored overturning load

Check that $M'_V > M_H$

This behavior rarely controls. The AASHTO specification uses eccentricity to evaluate overturning. The resultant of the vertical forces must fall within the center $\frac{1}{2}$ of the base, so the eccentricity must be less than $\frac{1}{4}$ times the base width

 $B/4 = (w_u + w_{te})/4$

Eccentricity or the location of the vertical resultant is calculated as:

F'v	Σ factored vertical forces (using 80% W_s & $W_a)$
M'v	Σ factored moments from vertical forces (using 80% W_s & $W_a)$
M _H	Σ factored moments from horizontal forces
е	$e = (w_u + w_{te})/2 - (M'_V - M_H)/F'_V$

For each load case, verify that the eccentricity is less than $\frac{1}{4}$ of the base width Check that e < B/4

f	Thiele Geotech Inc			Page	10/14
Project	LRFD Design Methodology	Project # 08110.00	Date	9/24/09	

Sliding

Friction on the base of the wall is used to resist sliding failure. Frictional resistance must be determined both between the wall assembly and the base and between the base and the foundation soil (or through the foundation soil).

The unfactored sliding resistance is calculated as the smaller result of the following equations:

For base to foundation soil failure, use:

 $R_{s(foundation soil)} = (W + P_v + Q_{dv}) \tan \phi + B_w^*c$

 $B_w = w_u + t_b$

where ϕ represents foundation soils, B_w is base width (block width plus $\frac{1}{2}H:1V$ distribution through base), and c represents foundation soil cohesion

For block to base material sliding, use:

 $R_{s(footing)} = \mu_b (W + P_v + Q_{dv})$

where μ_b represents a composite coefficient of friction for the base

The composite friction coefficient is calculated using contributory areas. The base of the standard Stone Strong 24 SF unit is 80 percent open and 20 percent concrete. On a unit width basis, the contributory area is 0.73 sf of concrete and 2.94 sf of aggregate.

If a tail extension is used, the area of the tail extension must also be calculated and the total area is also increased accordingly. Thus, the equation for composite friction coefficient across the base becomes:

 $\mu_{b} = (2.94^{*}\mu_{p - unit fill/base} + 0.73^{*}\mu_{p - block/base} + w_{te}^{*}\mu_{p - extension/base})/(3.67 + w_{te})$

where μ_p is the partial friction coefficient for the indicated materials (dimensions in ft)

	Thiele	Geotech	Inc
Project			

LRFD Design Methodology

9/24/09

Date

	Coefficient of Friction		
Block to Aggregate Base formed precast surface on compacted aggregate surface (includes Mass Extender)	0.8*tan ϕ_{b}		
Unit Fill to Aggregate Base screened aggregate (loose to moderate relative density - dumped) on compacted aggregate surface	lower tan φ _b or tan φ _u		
Block to Concrete Base formed precast surface on floated concrete surface (includes Mass Extender)	0.60		
Unit Fill Aggregate to Concrete Base screened aggregate (loose to moderate relative density - dumped) on floated concrete surface	0.8 *tan ϕ_u		
Concrete Tail Extension to Aggregate Base cast in place concrete on aggregate surface	tan ϕ_b		
Concrete Tail Extension to Concrete Base cast in place concrete on floated concrete surface	0.75		
Concrete Tail Extension Directly on Foundation Soil (Sand) cast in place concrete on granular soil	tan ϕ_f		
Note: These typical values may be used for evaluation of base sliding at the discretion of the user. The licensed engineer of record is responsible for all design input and for evaluating the reasonableness of calculation output based upon his/her knowledge of local materials and practices and on the specific design details.			

Since the unit fill aggregate is typically placed to a moderately loose state, the friction angle for the screened unit fill aggregate typically controls for the interface between the unit fill and the base aggregate.

If actual test data for the project specific materials is not available, or for preliminary design, the following conservative friction angles are suggested for base material:

	Friction Angle (degrees)		
	Well Graded, Densely Compacted	Screened Aggregate, Compacted	Screened Aggregate, Loose to Moderate Relative Density
Crushed Hard Aggregate >75% w/ 2 fractured faces, hard natural rock	42	40	36
Crushed Aggregate >75% w/ 2 fractured faces, medium natural rock or recycled concrete	40	38	35
Cracked Gravel >90% w/ 1 fractured face	36	35	32
Note: Physical testing of specific aggregates is recommended. When test data is not available, these typical values may be used at the discretion of the user. The licensed engineer of record is responsible for all design input and for evaluating the reasonableness of calculation output based upon his/her knowledge of local materials and practices and on the specific design details.			

P	Thiele Geotech Inc			Page	12/14
Project	LRFD Design Methodology	Project # 08110.00	Date	9/24/09	

For each load case, the minimum value for sliding resistance is calculated. A resistance factor of 0.8 is used for a cast in place interface (concrete base or a cast in place tail extension), and a factor of 0.9 is used in all other cases.

F _H	Σ factored horizontal forces
Fv	Σ factored vertical forces (using 100% W_s & $W_a)$
R's (footing)	$\mu_{b} F_{V}^{*} \phi_{\tau}$
R's (foundation soil)	$[F_V * tan(\phi) + B_w * c] * \phi_\tau$
$\varphi_{ au}$	0.8 for cast in place base or extension, 0.9 for other cases
min R's	smaller of R's (footing) or R's (foundation soil)

For each load case, the factored sliding resistance should be greater than the sum of factored horizontal forces

check that min $R'_s > F_H$

Bearing

Load Case Strength I-b generally controls bearing.

 B_f is the equivalent bearing area. This is the base block width adjusted for eccentricity, and including a $\frac{1}{2}H$:1V distribution through granular base or 1H:1V distribution through concrete base.

 $B_{f}' = w_{u} + w_{te} + t_{b} - 2^{*}e$ or $B_{f}' = w_{u} + w_{te} + 2^{*}t_{b} - 2^{*}e$ (for concrete base)

Fv	Σ factored vertical forces (using 100% W_s & $W_a)$
surcharge over wall	q _{DL} *w _u *DL/ES + q _{LL} *w _u *LL
weight of base	t _b * γ _b *ΕΗ
M _v	Σ factored moments from vertical forces (using 100% W_s & $W_a)$
M _H	Σ factored moments from horizontal forces
е	$(w_u + w_{te})/2 - (M_V - M_H)/F_V$
B _f ' (granular base)	$w_u + w_{te} + t_b - 2^*e$
B _f ' (concrete base)	$w_{u} + w_{te} + 2^{*}t_{b} - 2^{*}e$
contact pressure q _c	$(F_V + q_{DL}*w_u*DL/ES + q_{LL}*w_u*LL)/B_f + t_b*\gamma_b*EH$
bearing resistance q _b	$[c^*N_c + (h_e + t_b)^*\gamma_{found} N_q + 0.5^*\gamma_{found} B_f' N_{\gamma}]^*BC$

Thiele Geotech Inc

LRFD Design Methodology

Date

For each load case, the factored bearing resistance should be greater than the factored contact pressure

Check that q_b > q_c

Seismic Design

Project

Seismic components of force are calculated according to the procedures in FHWA 4.2h.

The maximum acceleration $A_m = (1.45 - A)^*A$ where A is the peak horizontal ground acceleration.

The seismic earth pressure coefficient is calculated with the following equation:

$$K_{ae} = \frac{\cos^2(\phi + \omega - \xi)}{\cos(\xi)\cos^2(-\omega)\cos(\delta - \omega + \xi) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \xi - \beta)}{\cos(\delta - \omega + \xi)\cos(\omega + \beta)}}\right]^2}$$

where ξ = arctan [K_h/(1 - K_v)]. K_v is generally taken as 0. K_h is the maximum horizontal acceleration of the wall, and is a function of the maximum allowable displacement of the wall during a seismic event. It is calculated with the following equation:

 $K_h = 1.66 * A_m * [A_m/(d*25.4)]^{0.25}$

with d = 2 inches, the conservatively assumed maximum horizontal displacement

The horizontal inertia force P_{ir} is calculated as follows:

$$P_{ir} = 0.5 * K_h * \gamma * H_2 * H + 0.125 * K_h * \gamma * H_2^2 * tan(\beta)$$

where H_2 is the height of backfill at the back of the block.

The seismic thrust is calculated as follows:

$$P_{ae} = 0.5 * \gamma * H_2^2 * (K_{ae} - K_a)$$
$$P_{aeh} = 0.5 * \gamma * H_2^2 * (K_{ae} - K_a) * \cos(\delta - \omega)$$

In overturning analysis, the inertial force is applied at half the height of the wall, while the seismic thrust is applied at 60% of the wall height. By AASHTO LRFD requirements, the full inertial force is applied along with 50% of the seismic thrust (AASHTO LRFD 11.10.7.1).

The only load case affected by the seismic forces is Extreme I (EQ).

_RFD Design Methodology The total overturning moment is ir $M_H + P_{ir}*H/2*EQ + (P_{aeh}/2)^{2}$ The total horizontal sliding force is $F_H + P_{ir}*EQ + (P_{aeh}/2)*EQ$ For load case Extreme 1, EQ = 1. All behaviors should be verified as	08110.00 ncreased as shown in the fo *(0.6*H)*EQ s increased as shown in the	9/24/09 ollowing equation: e following equation:
The total overturning moment is in $M_H + P_{ir}*H/2*EQ + (P_{aeh}/2)^{*}$ The total horizontal sliding force is $F_H + P_{ir}*EQ + (P_{aeh}/2)*EQ$ For load case Extreme 1, EQ = 1. All behaviors should be verified as	ncreased as shown in the fo *(0.6*H)*EQ s increased as shown in the	ollowing equation: e following equation:
The total horizontal sliding force is $F_H + P_{ir}^*EQ + (P_{aeh}/2)^*EQ$ For load case Extreme 1, EQ = 1. All behaviors should be verified as	s increased as shown in the	e following equation:
For load case Extreme 1, EQ = 1. All behaviors should be verified as	0	
All behaviors should be verified as		
overturning/eccentricity, and bear	s for the other load cases, i ing.	including sliding,
al Analysis		
Internal stability analysis is condu are addressed in the external stat possible.	cted for each segment of b pility analysis, only overturn	lock. Since bearing conditions ning and shearing failures are
Overturning is evaluated identical for block to block contact should b foundation. For each load case:	ly to external stability analy be within the middle ¾ of th	vsis, except that the eccentricity he base as required for a rock
check that e < B*3/8		
Sliding resistance is calculated ba reports for complete test data)	used on the interface shear	test (see interaction test
$R'_{s} = [362 + (W + P_v + Q_{dv})]^{3}$	* tan (35.2°)]*φ _τ	
where ϕ_{τ} = 0.90 (precast to	precast and aggregate to	aggregate)
For each load case, the factored s horizontal force:	sliding resistance must be g	greater than the factored
check that $R'_s > F_H$		
At a minimum, internal stability sh immediately above the mass exte of any dual-face units.	ould be evaluated at each nder), any change in mass	change in block width (i.e. extender size and at the base
	al Analysis Internal stability analysis is condu are addressed in the external state possible. Overturning is evaluated identical for block to block contact should be foundation. For each load case: check that $e < B^*3/8$ Sliding resistance is calculated base reports for complete test data) $R'_s = [362 + (W + P_v + Q_{dv})^v]$ where $\phi_\tau = 0.90$ (precast to For each load case, the factored so horizontal force: check that $R'_s > F_H$ At a minimum, internal stability sh immediately above the mass external of any dual-face units.	al Analysis Internal stability analysis is conducted for each segment of b are addressed in the external stability analysis, only overturn possible. Overturning is evaluated identically to external stability analy for block to block contact should be within the middle $\frac{3}{4}$ of th foundation. For each load case: check that e < B*3/8 Sliding resistance is calculated based on the interface shear reports for complete test data) R's = [362 + (W + P _v +Q _{dv})* tan (35.2°)]* ϕ_{τ} where $\phi_{\tau} = 0.90$ (precast to precast and aggregate to For each load case, the factored sliding resistance must be a horizontal force: check that R's > F _H At a minimum, internal stability should be evaluated at each immediately above the mass extender), any change in mass of any dual-face units.

Thiele Geotech Inc			Page	1/12
Project LRFD Example Calculation	Project # 08110.03	Date	7/10/10	
Example section – 7.5 ft tall unreinforced Uniform soil (sand) - γ = 125 pcf ϕ = 30° Wall is composed of two 24 SF blocks and ω' = arctan((2*4"+2")/(7.5ft*12"/ft)) = 6.34° Granular base aggregate – ϕ = 40° Unit fill aggregate – ϕ = 35°	d wall, 4H:1V slope, Sand c = 0 psf one 6 SF block $\delta = \frac{1}{2}*30^\circ = 15^\circ$	backfi	<u>ill</u>	
<u>Weight of Wall</u> $W_b = (2*6,000 \text{ lb})/8 \text{ ft} + (1,600 \text{ lb})/4 \text{ ft} = 1,90$ $W_a = (2*43.32 \text{ ft}^{3*}110 \text{ pcf})/8 \text{ ft} + (10.75 \text{ ft}^{3*}1)$ Total Wall Weight = 1,900 + 1,487 = 3,387	00 lb/ft block I10 pcf)/4 ft = 1,487 lb/ft agg Ib/ft	gregate	ə fill	
Forces/Geometric Properties <u>Center of Gravity</u> x _w = [(1.89+0.5*(7.5 ft-3 ft)*tan(6.34°))*(1,96	00 lb+1,487 lb)]/3,387 lb = :	2.14 fe	et	

Soil force components

$$\mathsf{K}_{\mathsf{a}} = \frac{\cos^2(30^\circ + 6.34^\circ)}{\cos^2(6.34^\circ)\cos(6.34^\circ - 15^\circ)\left[1 + \sqrt{\frac{\sin(30^\circ + 15^\circ)\sin(30^\circ - 14.0^\circ)}{\cos(6.34^\circ - 15^\circ)\cos(6.34^\circ + 14.0^\circ)}}\right]^2} = 0.314$$

$$\begin{split} \mathsf{P}_{\mathsf{h}} &= 0.5^{*}(0.314)^{*}125\mathsf{pcf}^{*}(7.5~\mathsf{ft})^{2*}\mathsf{cos}(15^{\circ}-6.34^{\circ}) = 1,092~\mathsf{lb} \\ \mathsf{P}_{\mathsf{v}} &= 0.5^{*}(0.314)^{*}125\mathsf{pcf}^{*}(7.5~\mathsf{ft})^{2*}\mathsf{sin}(15^{\circ}-6.34^{\circ}) = 166~\mathsf{lb} \end{split}$$

Thiele Geotech Inc			Page	2/12
Project LRFD Example Calculation	Project # 08110.03	Date	7/10/10	

Table of Unfactored Forces & Moments

	Force	Force x	
	(lb)	(ft)	(lb*ft)
Vertical Forces			
weight of wall	3,387	2.14	7,248
modified weight	3,090	2.14	6,613
earth pressure	166	3.94	654
DL surcharge	0	4.08	0
Horizontal Forces			
earth pressure	1,092	2.50	2,730
DL surcharge	0	3.75	0
LL surcharge	0	3.75	0

Table of Load & Resistance Factors

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
Load Factors				
DL/ES	1.50	1.00	1.50	1.00
LL	1.75	1.75	0.00	1.00
EH	1.50	1.50	1.50	1.00
EQ	0.00	0.00	0.00	0.00
Resistance Factors				
DC	0.90	1.25	1.50	1.00
EV	1.00	1.35	1.35	1.00
BC	0.50	0.50	0.50	0.50

	Thiele Geotech Inc			Pa
Project	LRFD Example Calculation	Project # 08110.03	Date	7/10/10

Table of Calculated Factored Forces (lbs)

	Unfactored	Load	Strength	Strength	Strength	Service
	Force	Factor	l-a	l-b	IV	I
Vertical Forces						
block weight	1,900	DC	1,710	2,375	2,850	1,900
aggregate weight	1,487	EV	1,487	2,007	2,007	1,487
modified agg weight	1,190	EV	1,190	1,606	1,606	1,190
earth pressure	166	EH	249	249	249	166
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	1,092	EH	1,774	1,774	1,774	1,183
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	0	LL	0	0	0	0

Table of Calculated Factored Moments (lb*ft)

	Unfactored	Load	Strength	Strength	Strength	Service
	Moment	Factor	l-a	l-b	IV	I
Vertical Forces						
block weight	4,066	DC	3,659	5,083	6,099	4,066
aggregate weight	3,191	EV	3,191	4,307	4,307	3,191
modified agg weight	2,552	EV	2,552	3,446	3,446	2,552
earth pressure	654	EH	984	981	981	654
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	2,730	EH	4,095	4,095	4,095	2,730
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	0	LL	0	0	0	0

LRFD Example Calculation	Pro	^{ject #} 08110.03		Date 7/10/10
Overturning/Eccentricity				
overtaining/Lecentricity	Strength	Strength	Strengt	h Service
	I-a	l-b	IV	I
M'v	I-a 7,195	I-b 9,510	IV 10,526	l 7,272

Check that $M'_V > M_H$

Strength Case I-a: M'_V = 3,659 + 2,552 + 984 = 7,195 lb*ft

M_H = 4,095

 $M'_V > M_H OK!!$

All other Load Cases: OK!!

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
F'v	3,149	4,230	4,705	3,256
M'v	7,195	9,510	10,526	7,272
M _H	4,095	4,095	4,095	2,730
E	0.85	0.55	0.47	0.44

Check that e < B/4

Strength Case I-a: e = (3.67')/2 - (7,195 lb*ft - 4,095 lb*ft)/ 3,149 lb = 0.85 ft.

B/4 = (3.67')/4 = 0.92 ft.

e ≤ B/4 <u>OK!!</u>

Thiele Geotech Inc

Project	Project #	Date
LRFD Example Calculation	08110.03	7/10/10

Sliding

 $\mu_{b} = ((0.8^{*}3.67^{'*}tan(35^{\circ})) + (0.2^{*}3.67^{'*}0.8^{*}tan(40^{\circ}))/(3.67^{'}) = 0.69$

 $\mu_{\rm f}$ = tan(30°) = 0.58

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
F _H	1,774	1,774	1,774	1,183
F _V	3,446	4,631	5,106	3,553
μ _b	0.69	0.69	0.69	0.69
ϕ_{τ}	0.8	0.8	0.8	0.8
R's (footing)	1,902	2,556	2,819	1,961
μ _f	0.58	0.58	0.58	0.58
$\varphi_{\tau f}$	0.9	0.9	0.9	0.9
R's (foundation soil)	1,799	2,417	2,665	1,855
min R's	1,799	2,417	2,665	1,855

Check that min $R'_s > F_H$

Strength Case I-a: R'_{s (footing)} = 0.69*3,446lb*0.8 = 1,902 lb

R's (foundation soil) = 0.58*3,446 lb*0.9 = 1,799 lb

min R'_s = 1,799 lb > F_H = 1,774 lb <u>OK!!</u>

Thiele	Geotech	Inc

Project # 08110.03	^{ate} 7/10/10
--------------------	------------------------

Bearing

 $N_q = e^{\pi^* \tan(30^\circ)} * (\tan(45^\circ + 30^\circ/2))^2 = 18.40$

 $N_c = (18.40-1)/tan(30^\circ) = 30.14$

 $N\gamma = 2^{*}(18.40+1)^{*}tan(30^{\circ}) = 22.40$

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
Fv	3,446	4,631	5,106	3,553
surcharge over wall	0	0	0	0
Mv	7,834	10,371	11,387	7,911
M _H	4,095	4,095	4,095	2,730
е	0.85	0.55	0.47	0.44
thickness of base $t_{\mbox{\tiny b}}$	0.75	0.75	0.75	0.75
B _f ' (granular base)	2.72	3.32	3.48	3.54
weight of base	141	141	141	94
contact pressure q_c	1,408	1,536	1,608	1,145
bearing resistance q_b	3,917	4,337	4,449	4,491

Check that $q_b > q_c$

Strength Case I-b:

weight of base = 0.75 ft*125pcf*EH = 0.75*125*1.5 = 141 psf

B_f'= 3.67ft+0.75ft-2*0.55 ft = 3.32 ft

 $q_c = (4,631 \text{ lb})/3.32 \text{ ft} + 141 \text{ psf} = 1,536 \text{ psf}$

 $q_b = [0*30.14+(12"+9")/12*125pcf*18.40+0.5*125pcf*3.32 ft*22.40]*0.5 = 4,337 psf$ $q_b > q_c OK!!$

All other Load Cases: OK!!

Page 6/12

Thiele Geotech Inc			Page	7/12
Project LRFD Example Calculation	Project # 08110.03	Date	7/10/10	

Internal Analysis

For 4.5 ft. tall segment above the bottom course.

Table of Unfactored Forces & Moments

	Force	x	Moment about toe
	(lb)	(ft)	(lb*ft)
Vertical Forces			
weight of wall	2,041	1.98	4,041
modified weight	1,863	1.98	3,689
earth pressure	60	3.83	230
DL surcharge	0	3.92	0
Horizontal Forces			
earth pressure	393	1.50	590
DL surcharge	0	2.25	0
LL surcharge	0	2.25	0

Table of Calculated Factored Forces (lbs)

	Unfactored	Load	Strength	Strength	Strength	Service
	Force	Factor	l-a	l-b	IV	I
Vertical Forces						
block weight	1,150	DC	1,035	1,438	1,725	1,150
aggregate weight	891	EV	891	1,203	1,203	891
modified agg weight	713	EV	713	963	963	713
earth pressure	60	EH	90	90	90	60
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	393	EH	590	590	590	393
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	0	LL	0	0	0	0

Ð	Thiele Geotech Inc			Page	8/12
Project	LRFD Example Calculation	Project # 08110.03	Date	7/10/10	

Table of Calculated Factored Moments (lb*ft)

	Unfactored	Load	Strength	Strength	Strength	Service
	Moment	Factor	l-a	l-b	IV	Ι
Vertical Forces						
block weight	2,277	DC	2,049	2,846	3,416	2,277
aggregate weight	1,764	EV	1,764	2,381	2,381	1,764
modified agg weight	1,411	EV	1,411	1,905	1,905	1,411
earth pressure	230	EH	345	345	345	230
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	393	EH	590	590	590	393
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	0	LL	0	0	0	0

Overturning/Eccentricity

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
M'v	3,805	5,096	5,666	3,918
M _H	590	590	590	393

Check that $M'_V > M_H$

Strength Case I-a: M'_V = 2,049 +1,411 + 345 = 3,805 lb*ft

M_H = 590 lb*ft

 $M'_V > M_H \ OK!!$

Thiele Geotech Inc					Page 9/1
Project LRFD Example Calculation	Projec	08110.03		Date 7/10/10)
	Strength	Strength	Strength	Service	
	I-a	l-b	IV	I	
F'v	1,838	2,491	2,778	1,923	
M'v	3,805	5,096	5,666	3,918	
M _H	590	590	590	393	
е	0.09	0.03	0.01	0.00	

Check that e < B*3/8

Strength Case I-a: e = 3.67'/2 - (3,805 lb*ft - 590 lb*ft)/ 1,838 lb = 0.09 ft.

B*3/8 = 3.67'*3/8 = 1.38 ft.

e < B*3/8 <u>OK!!</u>

All other Load Cases: OK!!

Interface Shear

 $\mu = \tan(35.2^\circ) = 0.705$

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
F _H	590	590	590	393
Fv	2,016	2,731	3,018	2,101
lult	362	362	362	362
μ	0.71	0.71	0.71	0.71
$\phi_{ au}$	0.9	0.9	0.9	0.9
R's	1,605	2,059	2,241	1,659

Check that min $R'_s > F_H$

Strength Case I-a: R'_s = (362 lb + 0.705*2,016 lb)*0.9 = 1,605 lb

R'_s = 1,605 lb > F_H = 639 lb <u>OK!!</u>

P	Thiele Geotech Inc			Page	10/12
Project	LRFD Example Calculation	Project # 08110.03	Date	7/10/10	

Internal Analysis (continued)

For 1.5 ft. tall segment representing the top block.

Table of Unfactored Forces & Moments

	Force	х	Moment about toe
	(lb)	(ft)	(lb*ft)
Vertical Forces			
weight of wall	696	1.81	1,260
modified weight	637	1.81	1,153
earth pressure	7	3.72	26
DL surcharge	0	3.75	0
Horizontal Forces			
earth pressure	44	0.50	22
DL surcharge	0	0.75	0
LL surcharge	0	0.75	0

Table of Calculated Factored Forces (lbs)

	Unfactored	Load	Strength	Strength	Strength	Service
	Force	Factor	I-a	l-b	IV	I
Vertical Forces						
block weight	400	DC	360	500	600	400
aggregate weight	296	EV	296	399	399	296
modified agg weight	237	EV	237	319	319	237
earth pressure	7	EH	11	11	11	7
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	44	EH	66	66	66	44
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	0	LL	0	0	0	0

Ð	Thiele Geotech Inc			Page	11/12
Project	LRFD Example Calculation	Project # 08110.03	Date	7/10/10	

Table of Calculated Factored Moments (lb*ft)

	Unfactored	Load	Strength	Strength	Strength	Service
	Moment	Factor	l-a	l-b	IV	Ι
Vertical Forces						
block weight	724	DC	652	905	1,086	724
aggregate weight	536	EV	536	723	723	536
modified agg weight	429	EV	429	579	579	429
earth pressure	27	EH	40	40	40	27
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	26	EH	39	39	39	26
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	0	LL	0	0	0	0

Overturning/Eccentricity

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
M'v	1,121	1,524	1,705	1,180
M _H	39	39	39	26

Check that $M'_V > M_H$

Strength Case I-a: M'_V = 652 + 429 + 40 = 1,121 lb*ft

M'_H = 39 lb*ft

Thiele	Geotech Inc				Pag	_{je} 12/12
Project LRFD E	Example Calculation	Projec	^{t#} 08110.03		Date 7/10/10	
		Strength	Strength	Strength	n Service	
		l-a	l-b	IV	I	
	F'v	608	830	930	644	
	M'v	1,121	1,524	1,705	1,180	
	M _H	39	39	39	26	
	е	0.06	0.05	0.04	0.04	

Check that e < B*3/8

Strength Case I-a: e = 3.67'/2 - (1,121 lb*ft - 39 lb*ft)/ 608 lb = 0.06 ft.

B*3/8 = 3.67'*3/8 = 1.38 ft.

e < B*3/8 <u>OK!!</u>

All other Load Cases: OK!!

Interface Shear

 $\mu = \tan(35.2^{\circ}) = 0.705$

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
F _н	66	66	66	44
Fv	667	910	1,010	703
ւ _{ult}	362	362	362	362
μ	0.71	0.71	0.71	0.71
φτ	0.9	0.9	0.9	0.9
R's	749	903	967	772

Check that min $R'_s > F_H$

Strength Case I-a: R'_s = (362 lb + 0.705*667 lb)*0.9 = 749 lb

R'_s = 749 lb > F_H = 66 lb <u>OK!!</u>

Thiele Geotech Inc

Project LRFD Example Calculation Project # 08110.04

9/24/09

Date

Example section – 12 ft tall wall w/ 36" mass extender, rock backfill, 250 psf surcharge
Retained soil (crushed rock) - γ = 125 pcf ϕ = 34°
Foundation soil (sand) - γ = 125 pcf ϕ = 30° c = 0 psf
Wall is composed of four 24 SF blocks w/ 36 in. mass extender to height of 6 ft
$\omega' = \arctan((4"*(4-1)-36")/(12ft*12"/ft)) = -9.46^{\circ}$ $\delta = \frac{3}{4}*34^{\circ} = 25.5^{\circ}$
Granular base aggregate – ϕ = 40°
Unit fill aggregate – ϕ = 35°
Weight of Wall

$$\begin{split} W_b &= (4*6,000 \text{ lb})/8 \text{ ft} = 3,000 \text{ lb/ft block} \\ W_a &= (4*43.32 \text{ ft}^{3*}110 \text{ pcf})/8 \text{ ft} = 2,383 \text{ lb/ft aggregate fill} \\ W_{te} &= 36"/12*6 \text{ ft}*145 \text{pcf} = 2,610 \text{ lb/ft tail extension} \\ W_s &= (1/2)*(12 \text{ ft-6 ft})*(36"/12)*125 \text{ pcf} = 1,125 \text{ lb/ft soil over mass extender} \\ \text{Total Wall Weight} &= 3,000 + 2,383 + 2,610 + 1,125 = 9,118 \text{ lb/ft} \end{split}$$

Forces/Geometric Properties

Center of Gravity

 $x_w = [(1.89+0.5^*(12 \text{ ft}-3 \text{ ft})^*\tan(6.34^\circ))^*(3,000 \text{ lb}+2,383 \text{ lb}) + (3.67\text{ ft}+36^{\prime\prime}/2/12)^* 2,610 \text{ lb} + (3.67\text{ ft}+(6 \text{ ft}-3 \text{ ft})^*\tan(6.34^\circ) + (2/3)^*36^{\prime\prime}/12 + (1/3)^*(-24^{\prime\prime}/12))^* 1,125 \text{ lb}]/9,118 \text{ lb} = 3.54 \text{ feet}$

Soil force components

$$\mathsf{K}_{\mathsf{a}} = \frac{\cos^2(34^\circ + -9.46^\circ)}{\cos^2(-9.46^\circ)\cos(-9.46^\circ - 25.5^\circ)\left[1 + \sqrt{\frac{\sin(34^\circ + 25.5^\circ)\sin(34^\circ - 0^\circ)}{\cos(-9.46^\circ - 25.5^\circ)\cos(-9.46^\circ + 0^\circ)}}\right]^2} = 0.331$$

$$\begin{split} \mathsf{P}_{\mathsf{h}} &= 0.5^{*}(0.331)^{*}125\mathsf{pcf}^{*}(12~\mathsf{ft})^{2*}\mathsf{cos}(25.5^{\circ}\text{-}(-9.46^{\circ})) = 2,438~\mathsf{lb} \\ \mathsf{P}_{\mathsf{v}} &= 0.5^{*}(0.331)^{*}125\mathsf{pcf}^{*}(12~\mathsf{ft})^{2*}\mathsf{sin}(25.5\text{-}(-9.46^{\circ})) = 1,705~\mathsf{lb} \\ \mathsf{Q}_{\mathsf{lh}} &= 0.331^{*}(250~\mathsf{psf})^{*}12~\mathsf{ft}^{*}\mathsf{cos}(25.5^{\circ}\text{-}(-9.46^{\circ})) = 813~\mathsf{lb} \end{split}$$

P	Thiele Geotech Inc			Page	2/12
Project	LRFD Example Calculation	Project # 08110.04	Date	9/24/09	

Table of Unfactored Forces & Moments

	Force	X	Moment about toe
	(lb)	(ft)	(lb*ft)
Vertical Forces			
weight of wall	9,118	3.54	32,255
modified weight	8,416	3.54	29,774
earth pressure	1,705	4.11	7,008
DL surcharge	0	4.33	0
Horizontal Forces			
earth pressure	2,438	4.00	9,751
DL surcharge	0	6.00	0
LL surcharge	813	6.00	4,875

Table of Load & Resistance Factors

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
Load Factors				
DL/ES	1.50	1.00	1.50	1.00
LL	1.75	1.75	0.00	1.00
EH	1.50	1.50	1.50	1.00
EQ	0.00	0.00	0.00	0.00
Resistance Factors				
DC	0.90	1.25	1.50	1.00
EV	1.00	1.35	1.35	1.00
BC	0.50	0.50	0.50	0.50

	Thiele Geotech Inc			Page	3/12
Project	LRFD Example Calculation	Project # 08110.04	Date	9/24/09	

Table of Calculated Factored Forces (lbs)

	Unfactored	Load	Strength	Strength	Strength	Service
	Force	Factor	l-a	l-b	IV	I
Vertical Forces						
block weight	5,610	DC	5,049	7,013	8,415	5,610
aggregate weight	3,508	EV	3,508	4,735	4,735	3,508
modified agg weight	2,806	EV	2,806	3,788	3,788	2,806
earth pressure	1,705	EH	2,557	2,557	2,557	1,705
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	2,438	EH	3,657	3,657	3,657	2,438
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	813	LL	1,422	1,422	0	813

Table of Calculated Factored Moments (lb*ft)

	Unfactored	Load	Strength	Strength	Strength	Service
	Moment	Factor	l-a	l-b	IV	I
Vertical Forces						
block weight	19,847	DC	17,862	24,808	29,770	19,847
aggregate weight	12,409	EV	12,409	16,752	16,752	12,409
modified agg weight	9,927	EV	9,927	13,402	13,402	9,927
earth pressure	10,227	EH	15,341	15,341	15,341	10,227
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	9,751	EH	14,626	14,626	14,626	9,751
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	4,875	LL	8,532	8,532	0	4,875

LRFD Example Calculation		Proj	ect # 08110.04		Date 9/24/09
Overturnin	g/Eccentricity				
		Strength	Strength	Strengt	h Service
		l-a	l-b	IV	I
	M'v	43,130	53,551	58,512	40,001
			00.450	44.000	0 754

Strength Case I-a: $M'_V = 17,862 + 9,924 + 15,341 = 43,130$ lb*ft

M_H = 23,158 lb*ft

M'_V > M_H <u>OK!!</u>

All other Load Cases: OK!!

	Strength Strength Strength		Strength	Service
	l-a	l-b	IV	I
F'v	10,412	13,357	14,760	10,121
M'∨	43,130	53,551	58,512	40,001
M _H	23,158	23,158	14,626	14,626
е	1.42	1.06	0.36	0.83

Check that e < B/4

Strength Case I-a: e = (3.67'+36''/12)/2 - (43,130 lb*ft - 23,158 lb*ft)/10,412 lb = 1.42 ft.B/4 = (3.67'+36''/12)/4 = 1.67 ft.

e < B/4 <u>OK!!</u>

Thiele Geotech Inc

Project	Project #	Date
LRFD Example Calculation	08110.04	9/24/09

Sliding

 $\mu_b = ((0.8^*3.67'^*tan(35^\circ)) + (0.2^*3.67'^*0.8^*tan(40^\circ)) + (36''/12^*tan(40^\circ))) / (3.67'+36''/12) = 0.76$ $\mu_f = tan(30^\circ) = 0.58$

	Strength	Strength	Strength	Service			
	l-a	l-b	IV	I			
F _H	5,079	5,079	3,657	3,250			
Fv	11,113	14,305	15,707	10,822			
μ _b	0.76	0.76	0.76	0.76			
ϕ_{τ}	0.8	0.8	0.8	0.8			
R's (footing)	6,753	8,692	9,544	6,576			
μ _f	0.58	0.58	0.58	0.58			
$\varphi_{\tau f}$	0.9	0.9	0.9	0.9			
R's (foundation soil)	5,775	7,433	8,162	5,623			
min R's	5,775	7,433	8,162	5,623			

Check that min $R'_s > F_H$

Strength Case I-a: R'_{s (footing)} = 0.76*11,113 lb*0.8 = 6,753 lb

R's (foundation soil) = 0.58*11,113 lb*0.9 = 5,800 lb

min R'_s = 5,800 lb > F_H = 5,079 lb <u>OK!!</u>

All other Load Cases: OK!!

Page 5/12

-	Thiele Geotech Inc		
ct	LRFD Example Calculation	Project # 08110.04	Date

Bearing

Proje

 $N_q = e^{\pi^* \tan(30^\circ)} * (\tan(45^\circ + 30^\circ/2))^2 = 18.40$

 $N_c = (18.40-1)/tan(30^\circ) = 30.14$

 $N\gamma = 2^{*}(18.40+1)^{*}tan(30^{\circ}) = 22.40$

Surcharge over wall = $w_u * q_{LL} * LL = 44^{"}/12 * 250 \text{ psf} * 1.75 = 1,604 \text{ psf}$

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
Fv	11,113	14,305	15,707	10,822
surcharge over wall	1,604	1,604	1,604	1,604
Mv	45,612	56,901	61,863	42,483
M _H	23,158	23,158	14,626	14,626
е	1.42	1.06	0.36	0.83
thickness of base $t_{\mbox{\tiny b}}$	0.75	0.75	0.75	0.75
B _f ' (granular base)	4.59	5.30	6.70	5.76
weight of base	141	141	141	94
contact pressure q_c	2,914	3,142	2,485	1,702
bearing resistance q_b	5,223	5,723	6,701	8,067

Check that $q_b > q_c$

Strength Case I-b:

weight of base = 0.75 ft*125pcf*EH = 0.75*125*1.5 = 141 psf

 $B_{f} = 3.67 \text{ft} + 36^{\circ}/12 + 0.75 \text{ft} - 2^{*}1.06 \text{ ft} = 5.30 \text{ ft}$

 $q_c = (14,305 \text{ psf} + 44"/12 + 250 \text{ psf} * 3.67 \text{ft} * 1.75)/5.30 \text{ft} + 141 = 3,142 \text{ psf}$

 $q_b = [0*30.14+(12"+9")/12*125pcf*18.40+0.5*125pcf*5.30ft*22.40]*0.5 = 5,723 psf$ $q_b > q_c OK!!$

All other Load Cases: OK!!

9/24/09

Thiele Geotech Inc			Page	7/12
Project LRFD Example Calculation	Project # 08110.04	Date	9/24/09	

Internal Analysis

For 6 ft. tall segment above the tail extension.

Table of Unfactored Forces & Moments

	Force	x	Moment about toe
	(lb)	(ft)	(lb*ft)
Vertical Forces			
weight of wall	2,691	2.06	5,551
modified weight	2,453	2.06	5,059
earth pressure	90	3.89	349
DL surcharge	0	4.00	0
Horizontal Forces			
earth pressure	476	2.00	952
DL surcharge	0	3.00	0
LL surcharge	317	3.00	952

Table of Calculated Factored Forces (lbs)

	Unfactored	Load	Strength	Strength	Strength	Service
	Force	Factor	l-a	l-b	IV	I
Vertical Forces						
block weight	1,500	DC	1,350	1,875	2,250	1,500
aggregate weight	1,191	EV	1,191	1,608	1,608	1,191
modified agg weight	953	EV	953	1,287	1,287	953
earth pressure	90	EH	134	134	134	90
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	476	EH	714	714	714	476
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	317	LL	556	556	0	317

	Thiele Geotech Inc			Page	8/12
Project	LRFD Example Calculation	Project # 08110.04	Date	9/24/09	

Table of Calculated Factored Moments (lb*ft)

	Unfactored	Load	Strength	Strength	Strength	Service
	Moment	Factor	l-a	l-b	IV	Ι
Vertical Forces						
block weight	3,094	DC	2,784	3,867	4,640	3,094
aggregate weight	2,457	EV	2,457	3,317	3,317	2,457
modified agg weight	1,966	EV	1,966	2,654	2,654	1,966
earth pressure	349	EH	523	523	523	349
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	952	EH	1,429	1,429	1,429	952
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	952	LL	1,667	1,667	0	952

Overturning/Eccentricity

	Strength Strength		Strength	Service
	l-a	l-b	IV	Ι
M'v	5,273	7,043	7,817	5,408
M _H	3,095	3,095	1,429	1,905

Check that $M'_V > M_H$

Strength Case I-a: M'_V = 2,784 + 1,966 + 523 = 5,273 lb*ft

M'_H = 3,095 lb*ft

 $M'_V > M_H OK!!$

Thiele Geotech Inc					Page	9/12
Project LRFD Example Calculation	Projec	08110.04		Date 9/24/09)	
	Strength I-a	Strength I-b	Strength IV	n Service		
F'v	2,437	3,296	3,671	2,543		
M'∨	5,273	7,043	7,817	5,408		
M _H	3,095	3,095	1,429	1,905		
е	0.94	0.64	0.09	0.46		

Check that e < B*3/8

Strength Case I-a: e = 3.67'/2 – (5,273 lb*ft – 3,095 lb*ft)/2,437 lb = 0.94 ft.

B*3/8 = 3.67'*3/8 = 1.38 ft.

e < B*3/8 <u>OK!!</u>

All other Load Cases: OK!!

Interface Shear

 $\mu = \tan(35.2^\circ) = 0.705$

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
F _H	1,270	1,270	714	794
Fv	2,676	3,618	3,993	2,781
lult	362	362	362	362
μ	0.71	0.71	0.71	0.71
ϕ_{τ}	0.9	0.9	0.9	0.9
R's	2,025	2,623	2,861	2,091

Check that min $R'_s > F_H$

Strength Case I-a: R's = (362 lb + 0.705*2,676 lb)*0.9 = 2,025 lb

R'_s = 2,025 lb > F_H = 1,270 lb <u>OK!!</u>

	Thiele Geotech Inc			Page	10/12
Project	LRFD Example Calculation	Project # 08110.04	Date	9/24/09	

Internal Analysis

For 3 ft. tall segment representing the top course.

Table of Unfactored Forces & Moments

	Force	X	Moment about toe
	(lb)	(ft)	(lb*ft)
Vertical Forces			
weight of wall	1,346	1.90	2,551
modified weight	1,227	1.90	2,325
earth pressure	22	3.78	85
DL surcharge	0	3.83	0
Horizontal Forces			
earth pressure	119	1.00	119
DL surcharge	0	1.50	0
LL surcharge	159	1.50	238

Table of Calculated Factored Forces (lbs)

	Unfactored	Load	Strength	Strength	Strength	Service
	Force	Factor	I-a	l-b	IV	I
Vertical Forces						
block weight	750	DC	675	938	1,125	750
aggregate weight	596	EV	596	804	804	596
modified agg weight	477	EV	477	643	643	477
earth pressure	22	EH	34	34	34	22
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	119	EH	179	179	179	119
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	159	LL	278	278	0	159

P	Thiele Geotech Inc			Page	11/12
Project	LRFD Example Calculation	Project # 08110.04	Date	9/24/09	

Table of Calculated Factored Moments (lb*ft)

	Unfactored	Load	Strength	Strength	Strength	Service
	Moment	Factor	l-a	l-b	IV	Ι
Vertical Forces						
block weight	1,422	DC	1,280	1,777	2,133	1,422
aggregate weight	1,129	EV	1,129	1,524	1,524	1,129
modified agg weight	903	EV	903	1,220	1,220	903
earth pressure	85	EH	127	127	127	85
DL surcharge	0	DL/ES	0	0	0	0
Horizontal Forces						
earth pressure	119	EH	179	179	179	119
DL surcharge	0	DL/ES	0	0	0	0
LL surcharge	238	LL	417	417	0	238

Overturning/Eccentricity

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
M'v	2,310	3,124	3,479	2,410
M _H	595	595	179	357

Check that $M'_V > M_H$

Strength Case I-a: M'_V = 1,280 + 903+ 127 = 2,310 lb*ft

M'_H = 595 lb*ft

 $M'_V > M_H \ OK!!$

Thiek	e Geotech Inc				Pag	_{je} 12/12
Project LRFD	Example Calculation	Projec	^{t#} 08110.04		Date 9/24/09	
		Strength	Strength	Strength	Service	
		l-a	l-b	IV	I	
	F' _V	1,185	1,614	1,802	1,249	
	M' _V	2,310	3,124	3,479	2,410	
	M _H	595	595	179	357	
	е	0.39	0.27	0.00	0.19	

Check that e < B*3/8

Strength Case I-a: e = 3.67'/2 - (2,310 lb*ft - 595 lb*ft)/1,185 lb = 0.39 ft.

B*3/8 = 3.67'*3/8 = 1.38 ft.

All other Load Cases: OK!!

Interface Shear

 $\mu = \tan(35.2^{\circ}) = 0.705$

	Strength	Strength	Strength	Service
	l-a	l-b	IV	I
F _н	456	456	179	278
Fv	1,304	1,775	1,963	1,368
۱ _{ult}	362	362	362	362
μ	0.71	0.71	0.71	0.71
φτ	0.9	0.9	0.9	0.9
R's	1,154	1,453	1,572	1,194

Check that min $R'_s > F_H$

Strength Case I-a: R's = (362 lb + 0.705*1,304 lb)*0.9 = 1,154 lb

R'_s = 1,154 lb > F_H = 456 lb <u>OK!!</u>